
+ +

Graph Course for Freshers:
The Shortest Path to first graph skills

2019 Edition

Welcome on board
This is a short journey for developers, data scientists and all other interested
folks. In this course you will learn how to get started with ArangoDB’s graph
related features and some other bits and pieces.

If you are new to ArangoDB, don't be afraid – we will start with the basic things.
Don't mind the number of pages too much, there are plenty of illustrations.

We will use real world data of domestic flights and airports in the US.
The structure of the data should be easy to understand and enable you to
write many interesting queries to answer a variety of questions.

Already familiar? Feel free to get right to importing the dataset on page 24.

We hope you will enjoy the course!

Special thanks to @darkfrog for his feedback to the beta version
and to thousands of enthusiastic downloaders of this course!

What you will learn

‣ Basics about graphs,
in general and in ArangoDB

‣ Architecture of ArangoDB
and what multi-model is

‣ How to import
(graph) data

‣ Doing queries in ArangoDB's
query language AQL

‣ Data retrieval with filtering,
sorting and more

‣ Simple graph queries
‣ Traversing through a graph

with different options
‣ Shortest path queries

3

Visualization of the
example dataset using
dots for airports and

arcs to represent flight
connections

Usability hint

4

Graph Course page

The symbol below indicates a link.

If you read this course in a
browser, click on links with
the middle-mouse button

to open a new tab!

The same goes for underlined links.

https://www.arangodb.com/learn/graphs/graph-course/
https://www.arangodb.com/learn/graphs/graph-course/
https://www.arangodb.com/learn/graphs/graph-course/

Table of Content
‣ Takeoff (p.6)
‣ Graph Basics (p.7)
‣ The Example Dataset (p.12)

‣ Concepts of ArangoDB (p.15)
‣ What is Multi-Model? (p.16)
‣ ArangoDB Architecture (p.19)

‣ Preparations for this Course (p.22)
‣ Download and Install ArangoDB (p.23)
‣ Import the Dataset (p.24)

‣ Starting with the dataset (p.32)
‣ ArangoDB Query Editor (p.33)
‣ First AQL Queries – Hands on (p.35)

5

‣ Graph Traversals (p.38)
‣ Traversals explained (p.39)
‣ Graph Traversal Syntax (p.40)
‣ First Graph Queries – Hands on (p.42)

‣ Traversal Options (p.44)
‣ Depth vs. Breadth First Search (p.45)
‣ Uniqueness Options (p.48)
‣ Traversal Options – Hands on (p.53)

‣ Advanced Graph Queries (p.54)
‣ Shortest Path (p.55)
‣ Pattern Matching (p.59)

‣ Landing (p.60)
‣ Survey and Support (p.61)
‣ Exercise Solutions (p.62)

Takeoff

Graph Basics
&

The Example Dataset

6

Graph Basics

What is a graph? There are multiple definitions and types. A brief overview:

In discrete mathematics, a graph is defined as set of vertices and edges.
In computing it is considered an abstract data type which is really good to
represent connections or relations – unlike the tabular data structures of
relational database systems, which are ironically very limited in expressing
relations.

A good metaphor for graphs is to think of nodes as circles and edges as
lines or arcs. The terms node and vertex are used interchangeably here.
Usually vertices are connected by edges, making up a graph. Vertices don't
have to be connected, but they may also be connected with more than
one other vertex via multiple edges. You may also find vertices connected
to themselves.

7

Vertex

Edge

Graph Basics

Important types of graphs:

‣ Undirected – edges connect pairs of nodes without
having a notion of direction

‣ Directed – edges have a direction associated with them
(the lines/arcs have arrow heads in depictions)

‣ DAG – Directed Acyclic Graph: edges have a direction and
their are no loops. In the most simple case, this means
that if you have vertices A and B and an edge from A to
B, then there must not be another edge from B to A.
One example for a DAG is a tree topology.

8

Graph Basics

In ArangoDB, each edge has a single direction, it can't point
both ways at once. This model is also known as oriented graph.

Moreover, edges are always directed, but you can ignore the
direction (follow in ANY direction) when you walk through the
graph, or follow edges in reverse direction (INBOUND) instead
of going in the direction they actually point to (OUTBOUND).
Walking through a graph is called traversal.

ArangoDB allows you to store all kinds of graphs in different
shapes and sizes, with and without cycles. You can save one
or more edges between two vertices or even the same vertex.
Also note that edges are full-fledged JSON documents,
which means you can store as much information on the edges
as you want!

9

OUTBOUND INBOUND

ANY

Graph Basics

A few examples of what can be answered by graph queries with the example dataset in mind:

‣ Give me all flights departing from JFK (airport in New York)
‣ Give me all flights landing in LAX (airport in Los Angeles) on January 5th
‣ Which airports can I reach with up to one stopover?

(From one or multiple starting airports)

‣ Shortest Path:
‣ What is the minimum amount of stopovers to fly from BIS

(Bismarck Municipal Airport in North Dakota) to LAX and where is the stopover?

‣ Pattern Matching:
‣ Departing from BIS, which flight to JFK with one stopover

(at least 20 minutes time for the transit) is the quickest and via which airport?

10

Graph Basics

Typical use cases for graph databases and "graphy" queries are:

Whenever the depth of your search is unknown (how many edges to follow), then graph queries
are easier to write and more efficient to compute compared to other query patterns.

11

‣ 360° View (Market Data, Customer, User, …)
‣ Artificial Intelligence
‣ Dependency Management
‣ Fraud Detection
‣ Identity & Access Management
‣ Knowledge Graph

‣ Master Data Management
‣ Network Infrastructure
‣ Recommendation Engine
‣ Risk Management
‣ Social Media Management

The Example Dataset

12

Attribute Description
_key international airport abbreviation code
_id collection name + "/" + _key (computed property)
name full name of the airport
city name of the associated city
country name of the country it is in
lat latitude portion of the geographic location
long longitude portion of the geographic location
state name of the US state it is in
vip airport with premium lounge? (true or false) *

Example airport as shown in the
document editor of the web interface:

* We marked a few airports randomly for example queries shown later

We took a dataset of US airports and flights, augmented and simplified it. Included are
more than 3,000 airports and roughly 300,000 flights from January 1st to 15th, 2008.

Data structure of airport documents:

You may switch
view mode to
Code (JSON)

The Example Dataset

13

Attribute Description
_from Origin (airport _id)
_to Destination (airport _id)
Year Year of flight (here: 2008)
Month Month of flight (1..12)
Day Day of flight (1..31)
DayOfWeek Weekday (1 = Monday .. 7 = Sunday)
DepTime Actual departure time (local, hhmm as number)
ArrTime Actual arrival time (local, hhmm as number)
DepTimeUTC Departure time (coord. universal time, ISO string)
ArrTimeUTC Arrival time (coordinated universal time, ISO string)
FlightNum Flight number
TailNum Plane tail number
UniqueCarrier Unique carrier code
Distance Travel distance in miles

Example flight as shown in the
document editor of the web interface:

Data structure of flights documents:

The Example Dataset

14

Here are some example documents from both collections (JSON view mode):

airports flights

Concepts of ArangoDB

What is Multi-Model?
&

ArangoDB Architecture

15

What is Multi-Model?

‣ ArangoDB is a native multi-model
database

‣ Multi-Model: ArangoDB supports
three major NoSQL data models

‣ Native: Supports all data models
with one database core and one
query language (AQL)

‣ Unique features of AQL:
‣ Possibility to combine all 3 data

models in a single query
‣ combine joins, traversals, filters,

geo-spatial operations and
aggregations in your queries

16

What is Multi-Model?

How is multi-model possible at all?

ArangoDB is a
document-oriented

data store using
primary keys

If you store a JSON
document and treat it as

opaque value under a
primary key then you

have a key/value store.

Special _from and _to
attributes in edge

documents pointing to
other documents make up

your graph in ArangoDB

17

Graphs

no data-model lock-in
larger solution-space
than relational model

simpler development

Documents - JSON

{
 "type": "pants",
 "waist": "32",
 "length": "34",
 "color": "blue",
 "material": "cotton"
}

{
 "type": "television",
 "diagonal size": "46",
 "hdmi inputs": "3",
 "wall mountable": "true",
 "built-in tuner": "true",
 "dynamic contrast": "50,000:1",
 "Resolution": "1920x1080"
}

Key Values

K => V
K => V
K => V
K => V

K => V
K => V
K => V
K => V

K => V
K => V
K => V
K => V

18

Benefits of ArangoDB’s NATIVE MULTI-MODEL approach

What is Multi-Model?

ArangoDB Architecture
ArangoDB has a storage hierarchy like other
databases have too:

‣ You can create different Databases
which can hold an arbitrary number of
collections. There is a default database
called _system

‣ Collections can hold arbitrary amounts
of documents. There are two collection
types: document and edge collections

‣ Documents are stored in JSON format.
A document is a JSON object at the top-
level, whose attribute names are strings
and the values can be null, true, false,
numbers, strings, arrays and nested
objects. There are also system attributes
(_key, _id, _rev, for edges also _from, _to)

19

ArangoDB Architecture

How do airports & flights form a graph?
Airports are the vertices, flights are the edges. The _id attribute of airport documents is used for
the _from and _to attributes in the edge documents to link airports together by flights.

20

ArangoDB Architecture

The two collection types in summary:

Document collections

‣ Contain documents
Each document is a JSON object

‣ Built-in primary index
Each document has a unique _key
by which it can be found quickly

‣ Documents can be vertices
if they are used as nodes in a graph

Edge collections

‣ Contain documents, but with special
edge attributes
_from: _id value of the source vertex
_to: _id value of the target vertex

‣ Built-in edge index for every edge
collection

‣ Place to hold relations
Comparable with many-to-many relations in
SQL database systems (cross tables)

21

Preparations for this Course

Download and Install ArangoDB
&

Import the Dataset

22

Download and Install ArangoDB
‣ Go to arangodb.com/download/ to find the latest

Community or Enterprise Edition for your operating system.
Follow the instructions on how to download and install it
for your OS. We recommend to set a password for the
default user root. Further details can be found here:
arangodb.com/docs/stable/installation.html

‣ Once the server is booted up, open http://localhost:8529
in your browser to access Aardvark, the ArangoDB WebUI

‣ Login with your credentials, e.g. as root.
If you did not set a password, then leave the password
field empty.

‣ Next, select a database, e.g. the default _system database.

23

https://www.arangodb.com/download/
https://www.arangodb.com/docs/stable/installation.html

Import the Dataset – Airports

‣ Download the example dataset here:
arangodb.com/arangodb_graphcourse_demodata/

‣ Unpack it to a folder of your choice.
After unpacking you should see two .csv files named airports.csv and flights.csv

‣ Import the airports with ArangoDB's import tool arangoimport.
Run the following on your command line (single line):

arangoimport --file path to airports.csv on your machine
--collection airports --create-collection true --type csv

You can specify --server.username name to use another user than root.
If you did not set a password or if the server has authentication disabled then
just hit return when asked for a password.

If ArangoDB is in your PATH environment variable, then you can run the binaries
by their name from any working directory. Otherwise specify the full path.

24

https://www.arangodb.com/arangodb_graphcourse_demodata/

Import the Dataset – Airports

You should see something like this in your console after putting in the import command:

25

Import the Dataset – Airports

What did arangoimport do?

‣ Created a new document collection (airports)
with a primary index on _key

‣ Created one document for each line of the CSV file
(except the first line and last, empty line)

‣ The first line is the header defining the attribute names

Note:

‣ Airport codes are provided as _key attribute in the CSV file

‣ The _key attribute is the primary key which uniquely
identifies documents within a collection. Therefore, we will
be able to retrieve airports via their airport code utilizing
the primary index

26

Import the Dataset – Airports

‣ Go to ArangoDB WebUI
(http://localhost:8529 in
your browser) and click on
COLLECTIONS in the menu

‣ Collection "airports"
should be there now

‣ The icon indicates that it is
a document collection

‣ Click on the collection to
browse its documents

27

Import the Dataset – Airports

28

Import the Dataset – Flights

The imported airports are the vertices of our graph. To complete our graph dataset,
we also need edges to connect the vertices. In our case the edges are flights.

29

‣ Import the flights into an edge collection with arangoimport.
Run the following in your command line (single line):

arangoimport --file path to flights.csv on your machine
--collection flights --create-collection true --type csv
--create-collection-type edge

Importing flights.csv might take a few moments to complete.
On a decent computer with at least 4 GB of memory and
an SSD drive it should take less than a minute.

Import the Dataset – Flights

What did arangoimport do?

‣ Created a new edge collection (flights)
with a primary index on attribute _key and an
edge index on _from and _to

‣ Created one edge document for each line of the
CSV file (except the header and the last line)

Note:

‣ The _from and _to attributes form the graph by
referencing document _ids of departure and
arrival airports

‣ No _key is provided, thus it gets auto-generated

30

Import the Dataset – Flights

‣ Go to ArangoDB WebUI
and click on COLLECTIONS
in the menu

‣ Edge Collection "flights"
should be there now

‣ The type of the collection
is indicated by a different
icon for edge collections

‣ Click on the flights
collection to browse its
edge documents

31

Starting with the dataset

AQL Query Editor
&

First AQL Queries

32

ArangoDB Query Editor

Now that we have demo
data in ArangoDB, let us
start to write AQL queries!

‣ Click on QUERIES in the
ArangoDB WebUI

‣ It brings up the AQL
query editor to write,
execute and profile
queries

‣ It supports syntax
highlighting and allows
you to save and manage
queries

33

ArangoDB Query Editor

Run query

Set limit for results shown

Write queries here

Switch result view mode

34

Query results

‣ Fetch John F. Kennedy airport by _id using the
DOCUMENT() function, which will look up the
document utilizing the primary index:
RETURN DOCUMENT("airports/JFK")

‣ Use a FOR loop to iterate over the airports
collection, filter by _key and return the Kennedy
airport document. This pattern gets optimized
automatically to utilize the primary index as well:
FOR airport IN airports
 FILTER airport._key == "JFK"
 RETURN airport

‣ This construct can be used for complex filter
criteria. Various operators are available.
FOR airport IN airports
 FILTER airport.city == "New York"
 AND airport.state == "NY"
 RETURN airport

‣ You can SORT the results by one or multiple
conditions in ascending (default) and
descending order (DESC), as well as offset and
LIMIT the number of results. Note: The order of
such high-level operations influences the
output!
FOR a IN airports
 FILTER a.vip
 SORT a.state, a.name DESC
 LIMIT 5
 RETURN a

‣ You don't have to RETURN full documents, you
can also return just parts of them (see the
KEEP() and UNSET() functions for instance) or
construct the query result as you desire:
FOR a IN airports
 FILTER a._key IN ["JFK", "LAX"]
 RETURN { fullName: a.name }

35

First AQL Queries – Hands on

https://www.arangodb.com/docs/stable/aql/functions-miscellaneous.html#document
https://www.arangodb.com/docs/stable/aql/operations-for.html
https://www.arangodb.com/docs/stable/aql/operators.html
https://www.arangodb.com/docs/stable/aql/operations-sort.html
https://www.arangodb.com/docs/stable/aql/operations-limit.html
https://www.arangodb.com/docs/stable/aql/operations-return.html
https://www.arangodb.com/docs/stable/aql/functions-document.html#keep
https://www.arangodb.com/docs/stable/aql/functions-document.html#unset

First AQL Queries – Hands on
‣ Make a GeoJSON object with GEO_POINT() from

the long and lat attributes for 500 airports:
FOR a IN airports
 LIMIT 500
 RETURN GEO_POINT(a.long, a.lat)

The web interface detects that the result is an
array of GeoJSON features and displays a map:

‣ Count all documents in the collection:
RETURN COUNT(airports)

‣ Count how many V.I.P. airports there are.
Below we use COLLECT to group the intermediate
results without condition, which means all filtered
documents are grouped together. COLLECT has a
syntax variation which allows us to count the
number of documents efficiently. We return this
number as result:
FOR airport IN airports
 FILTER airport.vip
 COLLECT WITH COUNT INTO count
 RETURN count

Feel free to experiment further. You can do a lot
more with AQL, but that is beyond the scope of this
course. Find the full AQL documentation online and
also see the Training Center on our website!

36

https://www.arangodb.com/docs/stable/aql/functions-geo.html#geo_point
https://www.arangodb.com/docs/stable/aql/operations-collect.html
https://www.arangodb.com/docs/stable/aql/index.html
https://www.arangodb.com/learn/

First AQL Queries – Knowledge Check
Exercises A: Document Queries
Here are some challenges if you want to practice
your AQL skills. Example solutions can be found at
the end of this course.

1. Retrieve the airport document of
Los Angeles International (LAX).

2. Retrieve all airport documents of the city
Los Angeles.

3. Find all airports of the state North Dakota (ND)
and return the name attribute only.

4. Retrieve multiple airports via their primary key
(_key), for example BIS, DEN and JFK. Return an
object for each match: RETURN {airport: a.name}

5. Count the airports in the state New York (NY)
which are not vip.

37

Graph Traversals

Traversals explained
&

Graph Traversal Syntax

38

Traversals explained

Traversal means to walk along edges of a graph in
certain ways, optionally with some filters. Traversing
is very efficient in graph databases. In ArangoDB,
this is achieved by a hybrid index type which you
already heard of: the edge index.

How many steps to go in a traversal is known as
traversal depth:
‣ The starting vertex in a traversal (S) has a

traversal depth of zero.
‣ At depth = 1 are the direct neighbors of S

(A, B and C).
‣ Their neighbor vertices in turn are at depth = 2

(D, E and F).

C

D E

39

Start (Depth 0)

Depth 1

Depth 2

S

A B

F

GDepth 3

https://www.arangodb.com/2016/04/index-free-adjacency-hybrid-indexes-graph-databases/

Graph Traversal Syntax

Before we do more graph queries we should spend some time on the underlying concepts of the
query options. We will go through the keywords and basic options step-by-step:

40

Query Syntax

FOR vertex[, edge[, path]]
 IN [min[..max]]
 OUTBOUND|INBOUND|ANY startVertex
 edgeCollection[, more…]

Explanation

FOR emits up to three variables
‣ vertex (object): the current vertex in a traversal
‣ edge (object, optional): the current edge in a traversal
‣ path (object, optional): representation of the current path

with two members:
‣ vertices: an array of all vertices on this path
‣ edges: an array of all edges on this path

IN min..max: defines the minimal and maximal depth for the
traversal. If not specified min defaults to 1 and max defaults to min

S 21 3

startVertex Depth of traversal

nTraversal in AQL documentation

By the way: Keywords like FOR, IN and ANY are
written all upper case in the code examples,
but it is merely a convention. You may also
write them all lower case or in mixed case.

Names of variables, attributes and collections
are case-sensitive however!

https://www.arangodb.com/docs/stable/aql/graphs-traversals.html
https://www.arangodb.com/docs/stable/aql/graphs-traversals.html

Graph Traversal Syntax

Before we do more graph queries we should spend some time on the underlying concepts of the
query options. We will go through the keywords and basic options step-by-step:

Query Syntax

FOR vertex[, edge[, path]]
 IN [min[..max]]
 OUTBOUND|INBOUND|ANY startVertex
 edgeCollection[, more…]

Explanation

OUTBOUND/INBOUND/ANY defines the direction of your search

S

startVertex

OUTBOUND

S

startVertex

INBOUND

Traversal follows outgoing edges

Traversal follows incoming edges

S

startVertex

ANY Traversal follows edges pointing
in any direction

edgeCollection: one or more names of collections holding the
edges that we want to consider in the traversal (anonymous graph)

41

Traversal in AQL documentation

Vertex

Edge

Traversal

https://www.arangodb.com/docs/stable/aql/graphs-traversals.html
https://www.arangodb.com/docs/stable/aql/graphs-traversals.html

Take a look at the following graph queries to get a
better understanding for the traversal syntax, try
them out and inspect the results:

‣ Return the names of all airports one can reach
directly (1 step) from Los Angeles International
(LAX) following the flights edges:
FOR airport IN 1..1 OUTBOUND
'airports/LAX' flights
 RETURN DISTINCT airport.name

‣ Return any 10 flight documents with the flight
departing at LAX and the destination airport
documents like {"airport":{…},"flight":{…}}
FOR airport, flight IN OUTBOUND
'airports/LAX' flights
 LIMIT 10
 RETURN {airport, flight}

‣ Return 10 flight numbers with the plane
landing in Bismarck Municipal airport (BIS):
FOR airport, flight IN INBOUND
'airports/BIS' flights
 LIMIT 10
 RETURN flight.FlightNum

‣ Find all connections which depart from or
land at BIS on January 5th and 7th and
return the destination city and the arrival
time in universal time (UTC):
FOR airport, flight IN ANY
'airports/BIS' flights
 FILTER flight.Month == 1
 AND flight.Day >= 5
 AND flight.Day <= 7
 RETURN { city: airport.city,
 time: flight.ArrTimeUTC }

42

First Graph Queries – Hands on

‣ Edges can also be accessed without using graph
traversals – they are just documents:
FOR flight IN flights
 FILTER flight.TailNum == "N238JB"
 RETURN flight

If there are _from, _to and _id attributes in the
response, the WebUI will try to display the result
in Graph view mode:

Exercises B: Graph Queries
1. Find all flights with FlightNum 860 (number) on

January 5th and return the _from and _to
attributes only (you may use KEEP() for this).

2. Find all flights departing or arriving at JFK with
FlightNum 859 or 860 and return objects with
flight numbers and airport names where the
flights go to or come from respectively.

3. Combine a FOR loop and a traversal like:
FOR orig IN airports
 FILTER orig._key IN ["JFK", "PBI"]
 FOR dest,flight IN ANY orig flights
 …
to do multiple traversals with different starting
points. Filter by flight numbers 859 and 860.
Return orig.name, dest.name, FlightNum and
Day. Name the attributes appropriately.

43

First Graph Queries – Knowledge Check

https://www.arangodb.com/docs/stable/aql/functions-document.html#keep

Traversal Options

Depth vs. Breadth First Search
&

Uniqueness Options

44

Depth vs. Breadth First Search

Everybody who already took a closer look into the documentation
about traversals, saw that there are also OPTIONS to control the
traversal behavior.

For traversals with a minimum depth greater than or equal to 2,
you have two options how to traverse the graph:

‣ Depth-first (default): Continue down the edges from the start
vertex to the last vertex on that path or until the maximum
traversal depth is reached, then walk down the other paths.

‣ Breadth-first (optional): Follow all edges from the start vertex to
the next level, then follow all edges of their neighbors by another
level and continue this pattern until there are no more edges to
follow or the maximum traversal depth is reached.

B
C

D E

F

A

45

1

2 3

4

5

6

Depth-first search

S

Depth vs. Breadth First Search

Both algorithms return the same amount of paths if all other traversal
options are the same, but the order in which edges are followed and
vertices are visited is different.
With a variable traversal depth of 1..2, the following paths would be found:

Note that there is no particular order in which edges of a single vertex are
followed. Hence, S→C may be returned before S→A and S→B. Shorter
paths are returned before longer paths using breadth-first search still.

B
C

D E

F

A

46

1

4 5

2

6

3

Breadth-first search

Depth-first Breadth-first
S → A S → A
S → A → D S → B
S → A → E S → C
S → B S → A → D
S → B → F S → A → E
S → C S → B → F

S

Depth vs. Breadth First Search

Breadth-first search can significantly improve performance if used together
with filters and limits by stopping before the maximal depth is reached.
Whether it is applicable depends on the use case. For example, you want to:
‣ Traverse a graph from vertex S with depth 1..10
‣ Find 1 vertex that fulfills your criteria,

lets assume vertex F meets your conditions
‣ Depth-first might follow the edge to A first, then all the way

down up to 10 hops to D, G, E, H and more
‣ Breadth-first however finds F at depth 2 and never visits

vertices past that level if you limit the query to a single match:
 FOR v IN 1..10 OUTBOUND 'verts/S' edges
 OPTIONS {bfs: true}
 FILTER v._key == 'F'
 LIMIT 1
 RETURN v

B
C

D E
F

A

47

G H I

… …

S

Uniqueness Options

Not every graph has just a single path from a chosen start
vertex to its connected vertices. There may even be cycles in
a graph.

‣ By default, the traversal along any of the paths is stopped
if an edge is encountered again, that has already been
visited. It keeps your traversals from running around in
circles until the maximum traversal depth is reached. It is a
safe guard to not produce a plethora of unwanted paths.

‣ Duplicate vertices on a path are allowed unless the
traversal is configured otherwise.

S

B

C

D

E

A

48

Graph with cycle S→B→C→S
and multiple paths from S to E

Uniqueness Options

The following query specifies the uniqueness options explicitly,
although the ones shown are used by default anyway:
FOR v, e, p IN 1..5 OUTBOUND 'verts/S' edges
 OPTIONS {
 uniqueVertices: 'none',
 uniqueEdges: 'path'
 }
 RETURN CONCAT_SEPARATOR('->', p.vertices[*]._key)

We use the path variable p, which is emitted by the traversal, and
concatenate all vertex keys of the paths neatly as single string
per path, like "S->A->D->E". The array expansion operator [*]
is used for convenience.

S

B

C

D

E

A

49

Graph with cycle S→B→C→S
and multiple paths from S to E

Array expansion in AQL documentation

https://www.arangodb.com/docs/stable/aql/advanced-array-operators.html
https://www.arangodb.com/docs/stable/aql/advanced-array-operators.html

Uniqueness Options

The query finds a total of 10 paths. One of them is S→B→C→S.
The start vertex is also the last vertex on that path, which is
possible because uniqueness of vertices is not ensured.

A path such as S→B→C→S→B→C is not present in the result,
because uniqueness of edges for paths avoids following the
same edge twice.

‣ uniqueEdges: 'none' would make the traverser follow the
edge from S to B to C to S, and from S to B to C again. It would
only stop there, because the maximum depth of 5 is reached
at that point. If the maximum depth of the query was higher,
then the traversal would run very long, producing a high
amount of paths because of the loop.

S

B

C

D

E

A

50

Graph with cycle S→B→C→S
and multiple paths from S to E

Uniqueness Options

To stop the start vertex (or other vertices) from being visited
more than once, we can enable uniqueness for vertices in two
ways:

‣ uniqueVertices: 'path' ensures no duplicate vertices on
each individual path.

‣ uniqueVertices: 'global' ensures every reachable vertex
to be visited once for the entire traversal.

It requires bfs: true (breadth-first search). It is not
supported for depth-first search, because the results would be
completely non-deterministic (varying between query runs), as
there is no rule in which order the traverser follows the edges
of a vertex. The uniqueness rule would lead to randomly
excluded paths whenever there are multiple paths to chose
from, of which it would take one.

S

B

C

D

E

A

51

Graph with cycle S→B→C→S
and multiple paths from S to E

Uniqueness Options
FOR v IN 0..5 OUTBOUND 'verts/S' edges
 OPTIONS {
 bfs: true,
 uniqueVertices: 'global'
 }
 RETURN v._key

The query gives us all vertex keys of this example graph exactly
once. Path or or uniqueness of vertices would give us a lot of
duplicates instead, 14 in total.

Which edges are actually followed in this traversal is not
deterministic, but since it is breadth-first search, every reachable
vertex is guaranteed to be visited one way or another.

Note: A depth of zero makes the traversal include the start
vertex, which would otherwise only be accessible via the emitted
path variable like p.vertices[0].

S

B

C

D

E

A

52

Graph with cycle S→B→C→S
and multiple paths from S to E

Traversal Options – Hands on

For our domestic flights example we might want to have all airports directly reachable from a given
airport. Let’s see which airports we can reach from Los Angeles

‣ Return all airports directly reachable from LAX:
FOR airport IN OUTBOUND 'airports/LAX' flights
 OPTIONS { bfs: true, uniqueVertices: 'global' }
 RETURN airport

‣ Compare the execution times to this earlier shown query, which returns the same airports:
FOR airport IN OUTBOUND 'airports/LAX' flights
 RETURN DISTINCT airport

You will see a significant performance improvement.

What happens is that RETURN DISTINCT de-duplicates airports only after the traversal has
returned all vertices (huge intermediate result), whereas uniqueVertices: 'global' is a
traversal option that instructs the traverser to ignore duplicates right away.

53

Advanced Graph Queries

Shortest Path
&

Pattern Matching

54

A shortest path query finds a connection between two given vertices
with the fewest amount of edges. With our domestic flights dataset we
could search for a connection between two airports with the fewest
stops for example.

‣ Find a shortest path between Bismarck Municipal airport and John F.
Kennedy airport and return the airport names on the route:
FOR v IN OUTBOUND
 SHORTEST_PATH 'airports/BIS'
 TO 'airports/JFK' flights
 RETURN v.name

We defined BIS as our start vertex and JFK as our target vertex.

55

Shortest Path in AQL documentation

Shortest Path – Hands on

https://www.arangodb.com/docs/stable/aql/graphs-shortest-path.html
https://www.arangodb.com/docs/stable/aql/graphs-shortest-path.html

Shortest Path

Source: Google Maps

56

We found a route via
Denver International
airport:

Bismarck Municipal

John F Kenny Intl

The result of the previous shortest
path query shows that you have
to change in Denver (DEN) for
example to get to JFK. There is
apparently no direct flight.

Note: A Shortest_Path query can
return different results. It just
finds and returns one of possibly
multiple shortest paths. In this
case it found: BIS→DEN→JFK

57

Source: Google Maps

Shortest Path

Denver Intl

Shortest Path – Hands on

Sometimes you just want the length of the shortest path. To achieve this you can use LET.

‣ Return the minimum number of flights from BIS to JFK
LET airports = (
 FOR v IN OUTBOUND
 SHORTEST_PATH 'airports/BIS'
 TO 'airports/JFK' flights
 RETURN v
)
RETURN LENGTH(airports) - 1

Your result should be 2.

Note:

‣ We placed a -1 at the end of the query to not count the end vertex as a step!

‣ Using the shortest path algorithm one can not apply filters.
We need to resort to pattern matching instead to do so.

58

https://www.arangodb.com/docs/stable/aql/operations-let.html

Pattern Matching
We adventured pretty deep into the graph jungle
already. Exploring pattern matching in detail is
beyond the scope of this course, but let us take a
quick look at it nonetheless.

We can easily add filter conditions for the end
vertex and/or the edge which leads to it. Both are
emitted by the traversal as we know:
 FOR endVertex, edgeToVertex IN ...

With a variable traversal depth of 1..2 and the
default traversal options, there are 4 paths in the
following graph:

If we return the emitted end vertex, then the
result will contain the vertices A, B, C and C again.

We could also return the edges and would end up
with four edges in total. However, for the paths
S→A→C and S→B→C we may want to to choose
one over the other based on certain criteria. Full
paths can be optionally emitted as third variable:
 FOR vertex, edge, path IN ...

The path variable can then be used to apply filter
conditions on intermediate or all vertices and/or
edges on the path. This allows for queries like:

What are the best connections between the airports A
and B determined by the lowest total travel time?

It can be used to apply complex filter conditions in
traversals taking the entire path into account. In
other words, it lets you discover specific patterns
– combinations of vertices and edges in graphs –
and is therefore called pattern matching.

59

Path S

A

B

C

Landing

Survey and Support
&

Exercise Solutions

60

What would you like to learn next?
Tell us with 3 clicks:

Support ArangoDB :)

Feeling stuck? Not for long.
Join the ArangoDB community to get help,

challenge ideas or discuss new features!

Survey and Support

61

Feedback to
the course

Survey

Star us on
GitHub

Slack
Community StackOverflow

https://goo.gl/forms/CYy8Y166LDU5GYXs2
https://goo.gl/forms/CYy8Y166LDU5GYXs2
https://goo.gl/forms/CYy8Y166LDU5GYXs2
https://goo.gl/forms/CYy8Y166LDU5GYXs2
https://goo.gl/forms/CYy8Y166LDU5GYXs2
https://goo.gl/forms/CYy8Y166LDU5GYXs2
https://goo.gl/forms/CYy8Y166LDU5GYXs2
https://goo.gl/forms/CYy8Y166LDU5GYXs2
https://goo.gl/forms/CYy8Y166LDU5GYXs2
https://goo.gl/forms/CYy8Y166LDU5GYXs2
https://goo.gl/forms/CYy8Y166LDU5GYXs2
https://goo.gl/forms/CYy8Y166LDU5GYXs2
https://goo.gl/forms/CYy8Y166LDU5GYXs2
https://goo.gl/forms/CYy8Y166LDU5GYXs2
https://goo.gl/forms/CYy8Y166LDU5GYXs2
https://goo.gl/forms/CYy8Y166LDU5GYXs2
https://goo.gl/forms/CYy8Y166LDU5GYXs2
https://goo.gl/forms/CYy8Y166LDU5GYXs2
https://goo.gl/forms/CYy8Y166LDU5GYXs2
https://goo.gl/forms/CYy8Y166LDU5GYXs2
https://goo.gl/forms/CYy8Y166LDU5GYXs2
https://goo.gl/forms/CYy8Y166LDU5GYXs2
https://goo.gl/forms/CYy8Y166LDU5GYXs2
https://goo.gl/forms/CYy8Y166LDU5GYXs2
https://goo.gl/forms/CYy8Y166LDU5GYXs2
https://goo.gl/forms/CYy8Y166LDU5GYXs2
https://goo.gl/forms/CYy8Y166LDU5GYXs2
https://goo.gl/forms/CYy8Y166LDU5GYXs2
mailto:learn@arangodb.com?subject=Feedback%20to%20ArangoDB%20Graph%20Course
mailto:learn@arangodb.com?subject=Feedback%20to%20ArangoDB%20Graph%20Course
mailto:learn@arangodb.com?subject=Feedback%20to%20ArangoDB%20Graph%20Course
mailto:learn@arangodb.com?subject=Feedback%20to%20ArangoDB%20Graph%20Course
mailto:learn@arangodb.com?subject=Feedback%20to%20ArangoDB%20Graph%20Course
mailto:learn@arangodb.com?subject=Feedback%20to%20ArangoDB%20Graph%20Course
mailto:learn@arangodb.com?subject=Feedback%20to%20ArangoDB%20Graph%20Course
mailto:learn@arangodb.com?subject=Feedback%20to%20ArangoDB%20Graph%20Course
mailto:learn@arangodb.com?subject=Feedback%20to%20ArangoDB%20Graph%20Course
mailto:learn@arangodb.com?subject=Feedback%20to%20ArangoDB%20Graph%20Course
mailto:learn@arangodb.com?subject=Feedback%20to%20ArangoDB%20Graph%20Course
mailto:learn@arangodb.com?subject=Feedback%20to%20ArangoDB%20Graph%20Course
mailto:learn@arangodb.com?subject=Feedback%20to%20ArangoDB%20Graph%20Course
mailto:learn@arangodb.com?subject=Feedback%20to%20ArangoDB%20Graph%20Course
mailto:learn@arangodb.com?subject=Feedback%20to%20ArangoDB%20Graph%20Course
mailto:learn@arangodb.com?subject=Feedback%20to%20ArangoDB%20Graph%20Course
mailto:learn@arangodb.com?subject=Feedback%20to%20ArangoDB%20Graph%20Course
mailto:learn@arangodb.com?subject=Feedback%20to%20ArangoDB%20Graph%20Course
mailto:learn@arangodb.com?subject=Feedback%20to%20ArangoDB%20Graph%20Course
mailto:learn@arangodb.com?subject=Feedback%20to%20ArangoDB%20Graph%20Course
mailto:learn@arangodb.com?subject=Feedback%20to%20ArangoDB%20Graph%20Course
mailto:learn@arangodb.com?subject=Feedback%20to%20ArangoDB%20Graph%20Course
mailto:learn@arangodb.com?subject=Feedback%20to%20ArangoDB%20Graph%20Course
mailto:learn@arangodb.com?subject=Feedback%20to%20ArangoDB%20Graph%20Course
https://goo.gl/forms/CYy8Y166LDU5GYXs2
https://www.arangodb.com/community/
https://github.com/arangodb/arangodb
https://github.com/arangodb/arangodb
https://github.com/arangodb/arangodb
https://github.com/arangodb/arangodb
https://github.com/arangodb/arangodb
https://github.com/arangodb/arangodb
https://github.com/arangodb/arangodb
https://github.com/arangodb/arangodb
https://github.com/arangodb/arangodb
https://github.com/arangodb/arangodb
https://github.com/arangodb/arangodb
https://github.com/arangodb/arangodb
https://github.com/arangodb/arangodb
https://github.com/arangodb/arangodb
https://github.com/arangodb/arangodb
https://github.com/arangodb/arangodb
https://github.com/arangodb/arangodb
https://github.com/arangodb/arangodb
https://github.com/arangodb/arangodb
https://github.com/arangodb/arangodb
https://github.com/arangodb/arangodb
https://github.com/arangodb/arangodb
https://github.com/arangodb/arangodb
https://github.com/arangodb/arangodb
https://github.com/arangodb/arangodb
https://github.com/arangodb/arangodb
https://github.com/arangodb/arangodb
https://github.com/arangodb/arangodb
https://github.com/arangodb/arangodb
https://github.com/arangodb/arangodb
https://github.com/arangodb/arangodb
https://github.com/arangodb/arangodb
https://github.com/arangodb/arangodb
https://github.com/arangodb/arangodb
https://github.com/arangodb/arangodb
https://github.com/arangodb/arangodb
https://github.com/arangodb/arangodb
https://github.com/arangodb/arangodb
https://github.com/arangodb/arangodb
https://github.com/arangodb/arangodb
https://github.com/arangodb/arangodb
https://github.com/arangodb/arangodb
https://github.com/arangodb/arangodb
https://github.com/arangodb/arangodb
https://github.com/arangodb/arangodb
https://github.com/arangodb/arangodb
https://github.com/arangodb/arangodb
https://github.com/arangodb/arangodb
https://slack.arangodb.com/
https://slack.arangodb.com/
https://slack.arangodb.com/
https://slack.arangodb.com/
https://slack.arangodb.com/
https://slack.arangodb.com/
https://slack.arangodb.com/
https://slack.arangodb.com/
https://slack.arangodb.com/
https://slack.arangodb.com/
https://slack.arangodb.com/
https://slack.arangodb.com/
https://slack.arangodb.com/
https://slack.arangodb.com/
https://slack.arangodb.com/
https://slack.arangodb.com/
https://slack.arangodb.com/
https://slack.arangodb.com/
https://slack.arangodb.com/
https://slack.arangodb.com/
https://slack.arangodb.com/
https://slack.arangodb.com/
https://slack.arangodb.com/
https://slack.arangodb.com/
https://slack.arangodb.com/
https://slack.arangodb.com/
https://slack.arangodb.com/
https://slack.arangodb.com/
https://slack.arangodb.com/
https://slack.arangodb.com/
https://slack.arangodb.com/
https://slack.arangodb.com/
https://slack.arangodb.com/
https://slack.arangodb.com/
https://slack.arangodb.com/
https://slack.arangodb.com/
https://slack.arangodb.com/
https://slack.arangodb.com/
https://slack.arangodb.com/
https://slack.arangodb.com/
https://slack.arangodb.com/
https://slack.arangodb.com/
https://slack.arangodb.com/
https://slack.arangodb.com/
https://slack.arangodb.com/
https://slack.arangodb.com/
https://slack.arangodb.com/
https://slack.arangodb.com/
https://slack.arangodb.com/
https://slack.arangodb.com/
https://slack.arangodb.com/
https://slack.arangodb.com/
https://slack.arangodb.com/
https://slack.arangodb.com/
https://slack.arangodb.com/
https://slack.arangodb.com/
https://slack.arangodb.com/
https://slack.arangodb.com/
https://slack.arangodb.com/
https://stackoverflow.com/questions/tagged/arangodb?sort=newest
https://stackoverflow.com/questions/tagged/arangodb?sort=newest
https://stackoverflow.com/questions/tagged/arangodb?sort=newest
https://stackoverflow.com/questions/tagged/arangodb?sort=newest
https://stackoverflow.com/questions/tagged/arangodb?sort=newest
https://stackoverflow.com/questions/tagged/arangodb?sort=newest
https://stackoverflow.com/questions/tagged/arangodb?sort=newest
https://stackoverflow.com/questions/tagged/arangodb?sort=newest
https://stackoverflow.com/questions/tagged/arangodb?sort=newest
https://stackoverflow.com/questions/tagged/arangodb?sort=newest
https://stackoverflow.com/questions/tagged/arangodb?sort=newest
https://stackoverflow.com/questions/tagged/arangodb?sort=newest
https://stackoverflow.com/questions/tagged/arangodb?sort=newest
https://stackoverflow.com/questions/tagged/arangodb?sort=newest
https://stackoverflow.com/questions/tagged/arangodb?sort=newest
https://stackoverflow.com/questions/tagged/arangodb?sort=newest
https://stackoverflow.com/questions/tagged/arangodb?sort=newest
https://stackoverflow.com/questions/tagged/arangodb?sort=newest
https://stackoverflow.com/questions/tagged/arangodb?sort=newest
https://stackoverflow.com/questions/tagged/arangodb?sort=newest
https://stackoverflow.com/questions/tagged/arangodb?sort=newest
https://stackoverflow.com/questions/tagged/arangodb?sort=newest
https://stackoverflow.com/questions/tagged/arangodb?sort=newest
https://stackoverflow.com/questions/tagged/arangodb?sort=newest
https://stackoverflow.com/questions/tagged/arangodb?sort=newest
https://stackoverflow.com/questions/tagged/arangodb?sort=newest
https://stackoverflow.com/questions/tagged/arangodb?sort=newest
https://stackoverflow.com/questions/tagged/arangodb?sort=newest
https://stackoverflow.com/questions/tagged/arangodb?sort=newest
https://stackoverflow.com/questions/tagged/arangodb?sort=newest
https://stackoverflow.com/questions/tagged/arangodb?sort=newest
https://stackoverflow.com/questions/tagged/arangodb?sort=newest
https://stackoverflow.com/questions/tagged/arangodb?sort=newest
https://stackoverflow.com/questions/tagged/arangodb?sort=newest
https://stackoverflow.com/questions/tagged/arangodb?sort=newest
https://stackoverflow.com/questions/tagged/arangodb?sort=newest
https://stackoverflow.com/questions/tagged/arangodb?sort=newest
https://stackoverflow.com/questions/tagged/arangodb?sort=newest
https://stackoverflow.com/questions/tagged/arangodb?sort=newest
https://slack.arangodb.com/
https://stackoverflow.com/questions/tagged/arangodb?sort=newest

Exercises A – Solutions
There are often multiple ways in AQL to retrieve
the same result. If your solution is different to
below queries but produces the correct result
then you did very well :)
1. Retrieve the airport document of

Los Angeles International (LAX).
RETURN DOCUMENT("airports/LAX")

2. Retrieve all airport documents of the city
Los Angeles.
FOR a IN airports
 FILTER a.city == "Los Angeles"
 RETURN a

3. Find all airports of the state North Dakota (ND)
and return the name attribute only.
FOR airport IN airports
 FILTER airport.state == "ND"
 RETURN airport.name

4. Retrieve multiple airports via their primary key
(_key), for example BIS, DEN and JFK. Return an
object for each match: RETURN {airport: a.name}

FOR a IN airports
 FILTER a._key IN ["BIS","DEN","JFK"]
 RETURN { airport: a.name }

5. Count the airports in the state New York (NY)
which are not vip.
FOR airport IN airports
 FILTER airport.state == "NY"
 AND NOT airport.vip
 COLLECT WITH COUNT INTO count
 RETURN count

62

Exercises B – Solutions
1. Find all flights with FlightNum 860 (number) on

January 5th and return the _from and _to
attributes only (you may use KEEP() for this).
FOR f IN flights
 FILTER f.FlightNum == 860
 AND f.Month == 1
 AND f.Day == 5
 RETURN KEEP(f, "_from", "_to")

2. Find all flights departing or arriving at JFK with
FlightNum 859 or 860 and return objects with
flight numbers and airport names where the
flights go to or come from respectively.
FOR a, f IN ANY
"airports/JFK" flights
 FILTER f.FlightNum IN [859,860]
 RETURN { airport: a.name,
 flight: f.FlightNum }

3. Combine a FOR loop and a traversal like:
FOR orig IN airports
 FILTER orig._key IN ["JFK", "PBI"]
 FOR dest, flight IN ANY orig flights
 …
to do multiple traversals with different starting
points. Filter by flight numbers 859 and 860.
Return orig.name, dest.name, FlightNum and
Day. Name the attributes appropriately.
FOR orig IN airports
 FILTER orig._key IN ["JFK", "PBI"]
 FOR dest, flight IN
 ANY orig flights
 FILTER flight.FlightNum IN [859,860]
 RETURN { from: orig.name,
 to: dest.name,
 number: flight.FlightNum,
 day: flight.Day }

63

https://www.arangodb.com/docs/stable/aql/functions-document.html#keep

Simran
Documentation Manager

AQL and data modeling
enthusiast with a passion

for technical writing

We hope you enjoyed the course and it helped you to get started!

Jan
Head of Communications

Makes complex things
easier to digest. Big fan
of community support

https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/
https://www.arangodb.com/

